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Kalman Filtering with Inequality Constraints
for Turbofan Engine Health Estimation

Abstract

Kalman ¯lters are often used to estimate the state variables of a dynamic system.

However, in the application of Kalman ¯lters some known signal information is often

either ignored or dealt with heuristically. For instance, state variable constraints

(which may be based on physical considerations) are often neglected because they

do not ¯t easily into the structure of the Kalman ¯lter. This paper develops two an-

alytic methods of incorporating state variable inequality constraints in the Kalman

¯lter. The ¯rst method is a general technique of using hard constraints to enforce

inequalities on the state variable estimates. The resultant ¯lter is a combination of a

standard Kalman ¯lter and a quadratic programming problem. The second method

uses soft constraints to estimate state variables that are known to vary slowly with

time. (Soft constraints are constraints that are required to be approximately satis-

¯ed rather than exactly satis¯ed.) The incorporation of state variable constraints

increases the computational e®ort of the ¯lter but signi¯cantly improves its estima-

tion accuracy. The improvement is proven theoretically and shown via simulation
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results. The use of the algorithm is demonstrated on a linearized simulation of a

turbofan engine to estimate health parameters. The turbofan engine model con-

tains 16 state variables, 12 measurements, and 8 component health parameters. It

is shown that the new algorithms provide improved performance in this example

over unconstrained Kalman ¯ltering.

1 Introduction

For linear dynamic systems with white process and measurement noise, the Kalman

¯lter is known to be an optimal estimator. However, in the application of Kalman

¯lters there is often known model or signal information that is either ignored or

dealt with heuristically [1]. This paper presents two ways to generalize the Kalman

¯lter in such a way that known inequality constraints among the state variables are

satis¯ed by the state variable estimates.

The ¯rst method presented here for enforcing inequality constraints on the state

variable estimates uses hard constraints. It is based on a generalization of the ap-

proach presented in [2], which dealt with the incorporation of state variable equality

constraints in the Kalman ¯lter. Inequality constraints are inherently more compli-

cated than equality constraints, but standard quadratic programming results can be

used to solve the Kalman ¯lter problem with inequality constraints. At each time

step of the constrained Kalman ¯lter, we solve a quadratic programming problem

to obtain the constrained state estimate. A family of constrained state estimates is

obtained, where the weighting matrix of the quadratic programming problem deter-

mines which family member forms the desired solution. It is stated in this paper,

on the basis of [2], that the constrained estimate has several important properties.

The constrained state estimate is unbiased and has a smaller error covariance than

the unconstrained estimate. We show which member of all possible constrained so-

lutions has the smallest error covariance. We also show the one particular member

that is always (i.e., at each time step) closer to the true state than the unconstrained

estimate.
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The second method for enforcing inequality constraints uses soft constraints

via a penalty term in the Kalman ¯lter optimization problem. This prevents the

state estimate from changing too rapidly. It essentially smooths the unconstrained

Kalman ¯lter estimate when the state variables are known to vary slowly with time.

It is shown that the constrained state estimate is unbiased, approaches the uncon-

strained estimate as time approaches in¯nity, and (under certain special conditions)

is equal to the running average of the unconstrained estimate.

The application considered in this paper is turbofan engine health parameter

estimation [3]. The performance of gas turbine engines deteriorates over time. This

deterioration reduces the fuel economy of the engine. Airlines periodically collect

engine data in order to evaluate the health of the engine and its components. The

health evaluation is then used to determine maintenance schedules. Reliable health

evaluations are used to anticipate future maintenance needs. This o®ers the bene¯ts

of improved safety and reduced operating costs. The money-saving potential of such

health evaluations is substantial, but only if the evaluations are reliable. The data

used to perform health evaluations are typically collected during °ight and later

transferred to ground-based computers for post-°ight analysis. Data are collected

each °ight at the same engine operating points and corrected to account for vari-

ability in ambient conditions. Typically, data are collected for a period of about

3 seconds at a rate of about 10 or 20 Hz. Various algorithms have been proposed

to estimate engine health parameters, such as weighted least squares [4], expert

systems [5], Kalman ¯lters [6], neural networks [6], and genetic algorithms [7].

This paper applies constrained Kalman ¯ltering to estimate engine component

e±ciencies and °ow capacities, which are referred to as health parameters. We can

use our knowledge of the physics of the turbofan engine in order to obtain a dynamic

model [8, 9]. The health parameters that we try to estimate can be modelled as

slowly varying biases. The state vector of the dynamic model is augmented to include

the health parameters, which are then estimated with a Kalman ¯lter [10]. The

model formulation in this paper is similar to previous NASA work [11]. However, [11]

was limited to a 3-state dynamic model and 2 health parameters, whereas this
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present work includes a more complete 16-state model and 8 health parameters. In

addition, we have some a priori knowledge of the engine's health parameters: we

know that they never improve. Engine health always degrades over time, and we can

incorporate this information into state constraints to improve our health parameter

estimation. (This is assuming that no maintenance or engine overhaul is performed.)

This is similar to the probabilistic approach to turbofan prognostics proposed in [12].

It should be emphasized that in this paper we are con¯ning the problem to the

estimation of engine health parameters in the presence of degradation only. There

are speci¯c engine cases that can result in abrupt shifts in ¯lter estimates, possibly

even indicating an apparent improvement in some engine components. An actual

engine performance monitoring system would need to include additional logic to

detect and isolate such faults.

Section 2 presents a discussion of the standard discrete time Kalman ¯lter. Some

important properties of the Kalman ¯lter that will be used later in this paper are

also reviewed. Section 3 generalizes the results of [2] to hard inequality constraints.

This inequality-constrained Kalman ¯lter has several attractive theoretical proper-

ties, including state variable estimates that are unbiased, an estimation error vari-

ance smaller than the unconstrained ¯lter, and a time-domain estimation error that

is always smaller than the unconstrained estimation error. Section 4 extends the

standard Kalman ¯lter in a di®erent way for those cases where it is known that the

state variables change slowly with time. This constraint is enforced by ¯nding a new

state estimate that is \close" to the unconstrained estimate in some sense, but that

is slowly time varying. It is shown that this new estimate is unbiased, approaches

the unconstrained estimate as time goes to in¯nity, and (under certain conditions)

is equal to the running average of the unconstrained estimate.

Section 5 discusses the problem of turbofan health parameter estimation, along

with the dynamic model that we used in our simulation experiments. Although the

health parameters are not state variables of the model, it is shown how the dynamic

model can be augmented in such a way that a Kalman ¯lter can estimate the health

parameters [10, 11]. We then show how this problem can be expressed in such

a way to be compatible with the constraints discussed in the preceding sections.
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Section 6 presents some simulation results based on a turbofan model linearized

around a known operating point. We show that the Kalman ¯lter can estimate

health parameters with an average error of less than 0.2%, and the constrained

Kalman ¯lters perform better than the unconstrained ¯lter. Section 7 presents

some concluding remarks and suggestions for further work.

2 Kalman Filtering

This section reviews standard (unconstrained) state estimation via the Kalman ¯lter

and some important properties of the ¯lter that will be used later in this paper. The

results and notation are taken from [13]. Consider the discrete linear time-invariant

system given by

x = Ax +Bu + w (1)k+1 k k k

y = Cx + ek k k

where k is the time index, x is the state vector, u is the known control input, y

is the measurement, and fw g and fe g are noise input sequences. The problemk k

is to ¯nd an estimate x̂ of x given the measurements fy ; y ; ¢ ¢ ¢ ; y g. Wek+1 k+1 0 1 k

will use the symbol Y to denote the column vector that contains the measurementsk

fy ; y ; ¢ ¢ ¢ ; y g. We assume that the following standard conditions are satisifed.0 1 k

E[x ] = ¹x (2)0 0

E[w ] = E[e ] = 0 (3)k k

TE[(x ¡ ¹x )(x ¡ ¹x ) ] = § (4)0 0 0 0 0

TE[w w ] = Q± (5)k kmm

TE[e e ] = R± (6)k kmm

T T TE[w e ] = E[x e ] = E[x w ] = 0 (7)k k km m m

where E[¢] is the expectation operator, ¹x is the expected value of x, and ± is thekm

Kronecker delta function (± = 1 if k = m, 0 otherwise). Q and R are positivekm

semide¯nite covariance matrices. The Kalman ¯lter equations are given by

T T ¡1K = A§ C (C§ C +R) (8)k k k
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x̂ = Ax̂ +Bu +K (y ¡Cx̂ ) (9)k+1 k k k k k

T§ = (A§ ¡K C§ )A +Q (10)k+1 k k k

where the ¯lter is initialized with x̂ = ¹x , and § given above. It can be shown [13]0 0 0

that the Kalman ¯lter has several attractive properties. For instance, if x , fw g,0 k

and fe g are jointly gaussian, the Kalman ¯lter estimate x̂ is the conditionalk k+1

mean of x given the measurements Y ; i.e., x̂ = E[x jY ]. Even if x ,k+1 k k+1 k+1 k 0

fw g, and fe g are not jointly gaussian, the Kalman ¯lter estimate is the best a±nek k

estimator given the measurements Y ; i.e., of all estimates of x that are of thek k+1

form FY + g (where F is a ¯xed matrix and g is a ¯xed vector), the Kalman ¯lterk

estimate is the one that minimizes the variance of the estimation error. It can be

shown [13, pp. 92 ®.] that the Kalman ¯lter estimate (i.e., the minimum variance

estimate) can be given by

¡1 ¹¹x̂ = ¹x ´ ¹x + § § (Y ¡ Y ) (11)xyk+1 k+1 k+1 k kyy

where ¹x is the mean of x , § is the variance matrix of x and Y , §xy yyk+1 k+1 k+1 k

¹is the covariance matrix of Y , and ¹x is the conditional mean of x givenk k+1 k+1

the measurements Y . In addition, from [13, p. 93] we know that the Kalmank

¯lter estimate x̂ and Y are jointly gaussian, in which case x̂ is conditionallyk+1 k k+1

gaussian given Y . The conditional probability density function of x given Y isk k+1 k

T ¡1¹ ¹exp[¡(x¡ ¹x) § (x¡ ¹x)=2]
P (xjY ) = (12)

n=2 1=2(2¼) j§j
where n is the dimension of x and

¡1§ = § ¡§ § § (13)xx xy yxyy

The Kalman ¯lter estimate is that value of x that maximizes the conditional prob-

ability density function P (xjY ), and § is the covariance of the Kalman ¯lter esti-

mation error.
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3 Kalman Filtering with Hard Inequality Con-

straints

This section extends the well known results of the previous section to cases where

there are known linear inequality constraints among the state components. Also,

several important properties of the constrained ¯lter are discussed. Consider the

dynamic system of (1) where we are given the additional constraint

Dx · d (14)k k

where D is a known s£ n constant matrix, s is the number of constraints, n is the

number of state variables, and s · n. It is assumed in this paper that D is full

rank, i.e., that D has rank s. This is an easily satis¯ed assumption. If D is not full

rank that means we have redundant state constraints. In that case we can simply

remove linearly dependent rows from D (i.e., remove redundant state constraints)

until D is full rank. Three di®erent approaches to the constrained state estimation

problem are given in this section. The time index k is omitted in the remainder of

this section for ease of notation.

3.1 The Maximum Probability Method

In this section we derive the constrained Kalman ¯ltering problem by using a max-

imum probability method. From [13, pp. 93 ®.] we know that the Kalman ¯lter

estimate is that value of x that maximizes the conditional probability density func-

tion P (xjY ), which is given in (12). The constrained Kalman ¯lter can be derived

by ¯nding an estimate ~x such that the conditional probability P (~xjY ) is maximized

and ~x satis¯es the constraint (14). Maximizing P (~xjY ) is the same as maximizing

its natural logarithm. So the problem we want to solve can be given by

T ¡1¹ ¹max lnP (~xjY ) =) min(~x¡ ¹x) § (~x¡ ¹x) (15)
~x

such that D~x · d

7NASA/TM—2003-212111



¹Using the fact that the unconstrained state estimate x̂ = ¹x (the conditional mean

of x), we rewrite the above equation as

T ¡1 T ¡1min(~x § ~x¡ 2x̂ § ~x) such that D~x · d (16)
~x

Note that this problem statement depends on the conditional gaussian nature of x̂,

which in turn depends on the gaussian nature of x , fw g, and fe g in (1).0 k k

3.2 The Mean Square Method

In this section we derive the constrained Kalman ¯ltering problem by using a mean

square minimization method. We seek to minimize the conditional mean square

error subject to the state constraints.

2minE(kx¡ ~xk jY ) such that D~x · d (17)
~x

where k ¢ k denotes the vector two-norm. If we assume that x and Y are jointly

gaussian, the mean square error can be written asZ
2 TE(kx¡ ~xk jY ) = (x ¡ ~x) (x¡ ~x)P (xjY )dx (18)Z Z

T T T= x xP (xjY )dx¡ 2~x xP (xjY )dx + ~x ~x (19)

Noting that the Kalman ¯lter estimate is the conditional mean of x, i.e.,Z
x̂ = xP (xjY )dx (20)

we formulate the ¯rst order conditions necessary for a minimum as

T Tmin(~x ~x¡ 2x̂ ~x) such that D~x · d (21)
~x

Again, this problem statement depends on the conditional gaussian nature of x̂,

which in turn depends on the gaussian nature of x , fw g, and fe g in (1).0 k k

3.3 The Projection Method

In this section we derive the constrained Kalman ¯ltering problem by directly pro-

jecting the unconstrained state estimate x̂ onto the constraint surface. That is, we

8NASA/TM—2003-212111



solve the problem

Tmin(~x¡ x̂) W (~x¡ x̂) such that D~x · d (22)
~x

where W is any symmetric positive de¯nite weighting matrix. This problem can be

rewritten as

T Tmin(~x W ~x¡ 2x̂ W ~x) such that D~x · d (23)
~x

The constrained estimation problems derived by the maximum probability method (16)

and the mean square method (21) can be obtained from this equation by setting

¡1W = § and W = I respectively. Note that this derivation of the constrained

estimation problem does not depend on the conditional gaussian nature of x̂; i.e.,

x , fw g, and fe g in (1) are not assumed to be gaussian.0 k k

3.4 The Solution of the Constrained State Estimation
Problem

The problem de¯ned by (23) is known as a quadratic programming problem [14, 15].

There are many algorithms for solving quadratic programming problems, almost all

of which fall in the category known as active set methods. An active set method

uses the fact that it is only those constraints that are active at the solution of the

problem that are signi¯cant in the optimality conditions. Assume that t of the s

^^inequality constraints are active at the solution of (23), and denote by D and d the t

rows of D and t elements of d corresponding to the active constraints. If the correct

set of active constraints was known a priori then the solution of (23) would also be

a solution of the equality-constrained problem

T T ^^min(~x W ~x¡ 2x̂ W ~x) such that D~x = d (24)
~x

This shows that the inequality constrained problem de¯ned by (23) is equivalent to

the equality-constrained problem de¯ned by (24). The equality-constrained problem

was discussed in [2], and so those results can be used to investigate the properties

of the inequality-constrained problem.
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3.5 Properties of the Constrained State Estimate

In this section we examine some of the statistical properties of the constrained

Kalman ¯lter. We use x̂ to denote the state estimate of the unconstrained Kalman

¯lter, and ~x to denote the state estimate of the constrained Kalman ¯lter as given

by (23), recalling that (16) and (21) are special cases of (23).

Theorem 1 The solution ~x of the constrained state estimation problem given by (23)

is an unbiased state estimator for the system (1) for any symmetric positive de¯nite

weighting matrix W . That is,

E(~x) = E(x) (25)

Theorem 2 The solution ~x of the constrained state estimation problem given by (23)

¡1with W = § , where § is the covariance of the unconstrained estimate given in (10)

and (13), has an error covariance that is less than or equal to that of the uncon-

strained state estimate. That is,

Cov(x¡ ~x) · Cov(x¡ x̂) (26)

At ¯rst this seems counterintuitive, since the standard Kalman ¯lter is by de¯nition

the minimum variance ¯lter. However, we have changed the problem by introducing

state variable constraints. Therefore, the standard Kalman ¯lter is no longer the

minimum variance ¯lter, and we can do better with the constrained Kalman ¯lter.

Theorem 3 Among all the constrained Kalman ¯lters resulting from the solution

¡1of (23), the ¯lter that uses W = § has the smallest estimation error covariance.

That is,

Cov(~x ) · Cov(~x ) for all W (27)¡1 W§

Theorem 4 The solution ~x of the constrained state estimation problem given by (23)

with W = I satis¯es the inequality

kx ¡ ~x k · kx ¡ x̂ k for all k (28)k k k k

where k¢k is the vector two-norm and x̂ is the unconstrained Kalman ¯lter estimate.
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Theorem 5 The error of the solution ~x of the constrained state estimation problem

given by (23) with W = I is smaller than the unconstrained estimation error in the

sense that

Tr[Cov(~x)] · Tr[Cov(x̂)] (29)

where Tr[¢] indicates the trace of a matrix, and Cov(¢) indicates the covariance matrix

of a random vector.

The above theorems all follow from the equivalence of (23) and (24), and the

proofs presented in [2]. We note that if any of the s constraints are active at the

solution of (23), then strict inequalities hold in the statements of Theorems 2{5. The

only time that equalities hold in the theorems is if there are no active constraints at

the solution of (23); that is, if the unconstrained Kalman ¯lter satis¯es the inequality

constraints.

4 Kalman Filtering with Soft Inequality Con-

straints

In this section we are interested in obtaining a Kalman ¯lter-based state estimate

for state variables which we know a priori vary slowly with time. Since we are

concerned with using the Kalman ¯lter as a parameter estimator, we will assume for

this problem that the A matrix in (1) is the identity matrix and the B matrix is zero.

With this in mind, we can use the results of the previous section, especially (22), to

formulate a Kalman ¯lter-based estimate as follows

Tmin(~x ¡ x̂ ) W (~x ¡ x̂ ) such that ~xfig varies slowly (30)k k k k
~xk

where, as before, W is a constant symmetric positive de¯nite weighting matrix. This

is a type of regularization; that is, some additional structure is incorporated into

the Kalman ¯lter estimate [16, 17, 18]. The above problem can be formulated as

T Tmin[(~x ¡ x̂ ) W (~x ¡ x̂ ) + (~x ¡ ~x ) V (~x ¡ ~x )] (31)k k k k k k¡1 k k k¡1
~xk
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where V is a (possibly time-varying) symmetric positive de¯nite weighting matrixk

that balances the desire for a close approximation to x̂ and smooth estimate ~x. The

solution to the above problem is

~x = E[x ] (32)0 0

¡1~x = (W + V ) (Wx̂ + V ~x )k k k k k¡1

¡1Since W and V are both positive de¯nite, we know that (W + V ) exists.k k

Theorem 6 Assume (as stated above) that A = I and B = 0 in (1). Then the

solution ~x of the constrained state estimation problem given by (32) is an unbiased

state estimator for the system (1) for any symmetric positive de¯nite weighting

matrices W and V . That is,k

E(~x) = E(x) (33)

Proof: The theorem can be proven by induction. Since A = I and B = 0 we know

that E[x ] = ¹x for all k. We therefore know from (32) that ~x = ¹x . From (32)k 0 0 0

with k = 0 we see that E[~x ] = ¹x . We repeat this process to show that E[~x ] =1 0 k

E[x̂ ] = ¹x for all k.0k

QED

Theorem 7 Assume (as stated above) that A = I and B = 0 in (1). Further

assume that w = 0 in (1) (since we are trying to estimate constant parameters).k

Then the constrained state estimate ~x approaches the unconstrained estimate x̂ in

the limit as time goes to in¯nity. That is,

lim ~x = lim x̂ (34)k k
k!1 k!1

Proof: We see from (8){(10) that, under the conditions stated here, K ! 0 ask

k ! 1. Therefore x̂ approaches a constant value as k ! 1. From (32) we seek

that, in steady state

¡1~x = (W + V ) (Wx̂+ V ~x) (35)k k

¡1 ¡1 ¡1=) ~x = [I ¡ (W + V ) V ] (W + V ) Wx̂k k k

¡1 ¡1= (I +W V )(W + V ) Wx̂k k
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where the last equality follows from the matrix inversion lemma. Premultiplying

both sides of the above equation by W we obtain W ~x = Wx̂, so if W is invertible

(which it is, since we are assuming in this section that W is positive de¯nite), we

obtain ~x = x̂ (in steady state). Note that the theorem is true even if V does notk

approach a steady state value as k !1.

QED

Theorem 8 If V = (k ¡ 1)W in (32) then ~x is the running average of x̂ .k k k

Proof: The running average of x̂ is de¯ned ask

kX1
X = x̂ (36)k i

k
i=1

which implies that
1

X = (x̂ + kX ) (37)k+1 k+1 k
k + 1

Now if V = (k ¡ 1)W then (32) shows thatk

¡1~x = [(k + 1)W ] (Wx̂ + kW ~x ) (38)k+1 k+1 k

1
= (x̂ + k~x )k+1 k

k + 1

which is exactly the running average shown in (37).

QED

5 Turbofan Engine Health Monitoring

Figure 1 shows a schematic representation of a turbofan engine. A single inlet

supplies air°ow to the fan. Air leaving the fan separates into two streams: one

stream passes through the engine core, and the other stream passes through the

annular bypass duct. The fan is driven by the low pressure turbine. The air passing

through the engine core moves through the compressor, which is driven by the high

pressure turbine. Fuel is injected in the main combustor and burned to produce

hot gas for driving the turbines. The two air streams combine in the augmentor
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duct, where additional fuel is added to further increase the air temperature. The air

leaves the augmentor through the nozzle, which has a variable cross section area.

Various turbofan simulation packages have been proposed over the years [19, 20,

21]. This model is based on a gas turbine engine simulation software package called

DIGTEM (Digital Turbofan Engine Model) [8, 22]. DIGTEM is written in Fortran

and includes 16 state variables. It uses a backward di®erence integration scheme

because the turbofan model contains time constants that di®er by up to four orders

of magnitude.

The nonlinear equations used in DIGTEM can be found in [8, 9]. The time-

invariant equations can be summarized as follows.

_x = f(x; u; p) + w (t) (39)1

y = g(x; u; p) + e(t)

x is the 16-element state vector, u is the 6-element control vector, p is the 8-element

vector of health parameters, and y is the 12-element vector of measurements. The

noise term w (t) represents inaccuracies in the model, and e(t) represents measure-1

ment noise. The elements in these vectors are summarized in Tables 1{4, along with

their values at the nominal operating point (x ; u ; p ; y ) considered in this paper.0 0 0 0

Table 4 also shows typical signal-to-noise ratios for the measurements, based on

NASA experience and previously published data [23]. Sensor dynamics are assumed

to be high enough bandwidth that they can be ignored in the dynamic equations [23].

Equation (39) can be linearized about the nominal operating point by using the ¯rst

order approximation of the Taylor series expansion

f(x; u; p) ¼ f(x ; u ; p ) + (40)0 0 0

@f(¢) @f(¢) @f(¢)
(x¡ x ) + (u¡ u ) + (p¡ p ) + w (t)0 0 0 1

@x @u @p

@g(¢) @g(¢) @g(¢)
g(x; u; p) ¼ g(x ; u ; p ) + (x¡ x ) + (u¡ u ) + (p¡ p ) + e(t)0 0 0 0 0 0

@x @u @p

Therefore, a linear small signal system model can be de¯ned for small excursions

from the nominal operating point.

14NASA/TM—2003-212111



± _x ´ _x¡ _x = A ±x+B±u+A ±p+ w (t) (41)0 1 2 1

±y ´ y ¡ y = C ±x+D±u+C ±p+ e(t)0 1 2

We note that

@f
A = (42)1

@x
¢ _x(i)

A (i; j) ¼1
¢x(j)

Similar equations hold for the A , C , and C matrices. We obtained numerical2 1 2

approximations to the A , A , C , and C matrices by varying x and p from their1 2 1 2

nominal values (one element at a time) and recording the new _x and y vectors in

DIGTEM.

Turbofan engine health monitoring is typically a two-step process [3]. In the

¯rst step, engine data is collected each °ight at the same engine operating points

and corrected to account for variability in ambient conditions. Data are typically

collected for a period of about 3 seconds per °ight at a rate of about 10 or 20 Hz. In

the second step, the data are transferred to ground-based computers for post-°ight

analysis to determine engine health.

The goal of our turbofan engine health monitoring problem is to obtain an

accurate estimate of ±p, which varies slowly with time. We therefore assume that

±p is constant between measurement times. We also assume that the control input

is perfectly known, so ±u = 0. This gives us the following equivalent discrete time

system [24, pp. 90 ®.].

±x = A ±x +A ±p + w (43)k+1 1d k 2d k 1k

±y = C ±x +C ±p + e1 2k k k k

1¡where A = exp(A T ) and A = A (A ¡ I)A (assuming that A is invertible,1 2 11d 2d 1d1

which it is in our problem). We next augment the state vector with the health

parameter vector [11] to obtain the system equation
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" # " # " # " #
±x A A ±x wk+1 1d 2d k 1k= + (44)
±p 0 I ±p wk+1 k 2k" #h i ±xk±y = C C + e1 2k k±pk

where w is a small noise term (uncorrelated with w ) that represents model2k 1k

uncertainty and allows the Kalman ¯lter to estimate time-varying health parameter

variations. The discrete time small signal model can be written as" # " #
±x ±xk+1 k= A + w (45)k±p ±pk+1 k" #

±xk±y = C + ek k±pk

where the de¯nitions of A and C are apparent from a comparison of the two preced-

ing equations. Now we can use a Kalman ¯lter to estimate ±x and ±p . Actually,k k

we are only interested in estimating ±p (the health parameter deviations), but thek

Kalman ¯lter gives us the bonus of also estimating ±x (the excursions of the originalk

turbofan state variables).

It is known that health parameters do not improve over time. That is, ±p(1),

±p(2), ±p(3), ±p(4), ±p(6), and ±p(8) are always less than or equal to zero and

always decrease with time. Similarly, ±p(5) and ±p(7) are always greater than or

equal to zero and always increase with time. In addition, it is known that the health

~parameters vary slowly with time. As an example, since ±p(1) is the constrained

~estimate of ±p(1), we can enforce the following constraints on ±p(1).

~±p(1) · 0 (46)

+~ ~±p (1) · ±p (1) + °k+1 k 1

¡~ ~±p (1) ¸ ±p (1)¡ °k+1 k 1

+ ¡where ° and ° are nonnegative factors chosen by the user that allows the state1 1

¡ +estimate to vary only within prescribed limits. Typically we choose ° > ° so that1 1

the state estimate can change more in the negative direction than in the positive
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direction. This is in keeping with our a priori knowledge that this particular state

+variable never increases with time. Ideally we would have ° = 0 since ±p(1) never1

increases. However, since the state variable estimate varies around the true value of

+the state variable, we choose ° > 0. This allows some time-varying increase in the1

state variable estimate to compensate for a state variable estimate that is smaller

than the true state variable value.

These constraints are linear and can therefore easily be incorporated into the

form required in the constrained ¯ltering problem statement (14). Note that this

does not take into account the possibility of abrupt changes in health parameters

due to discrete damage events. That possibility must be addressed by some other

means (e.g., residual checking [3]) in conjuction with the methods presented in this

paper.

6 Simulation Results

We simulated the methods discussed in this paper using MATLAB. We simulated

a steady state 3 second burst of engine data measured at 10 Hz during each °ight.

Each of these routine services was performed at the single operating point shown

in Tables 1{4. The signal-to-noise ratios were determined on the basis of NASA

experience and previously published data [23] and are shown in Table 4. We used a

one-sigma process noise in the Kalman ¯lter equal to 1% of the nominal state values

to allow the ¯lter to be responsive to changes in the state variables. We set the one

sigma process noise for each component of the health parameter portion of the state

derivative equation to 0.01% of the nominal parameter value. This was obtained by

tuning. It was small enough to give reasonably smooth estimates, and large enough

to allow the ¯lter to track slowly time-varying parameters. For the ¯lter with hard

constraints, we chose the ° variables in (46) such that the maximum allowable rate

~of change in ±p was a linear 9% per 500 °ights in the direction of expected change,

and 3% per 500 °ights in the opposite direction. The true health parameter values

never change in a direction opposite to the expected change. However, we allow

the state estimate to change in the opposite direction to allow the Kalman ¯lter
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to compensate for the fact that the state estimate might be either too large or too

¡1small. We set the weighting matrix W in (23) and (31) equal to § in accordance

with Theorem 3. We found by experimenting that setting the weighting matrix Vk

in (31) equal to 120W resulted in good performance for the Kalman ¯lter with soft

constraints.

The ¯rst test case we simulated was a linear degradation of the ¯rst health

parameter (fan air°ow) over 500 °ights, while the other seven health parameters

remained constant. Figure 2 shows the Kalman ¯lters' performances in this case. We

ran eight simulations like this. In each simulation, one of the eight health parameters

degraded linearly by a factor of 3% during the course of the simulation, while the

other seven health parameters remained constant. The 3% degradation over 500

°ights is in line with turbofan performance data collected by NASA and reported in

the literature [25]. Each of the eight cases exhibit performance similar to Figure 2.

Table 5 shows the performance of the ¯lters averaged over all eight simulations.

All of the ¯lters estimate the health parameters to within less than 0.2% of their

nominal values. It can be seen that (on average) the ¯lter with soft constraints

o®ers an 11% improvement over the unconstrained ¯lter, and the ¯lter with hard

constraints o®ers a 22% improvement over the unconstrained ¯lter. These numbers

should not be interpreted as having any statistical sign¯cance (due to our limited

sample size of eight cases) but they do show the improvement that is possible with

constrained Kalman ¯lters. Table 5 also shows that a couple of health parameters

(fan air°ow and LPT air°ow) were actually estimated better with the unconstrained

¯lter than with the constrained ¯lter. We therefore see that the constrained ¯lter

does not guarantee better estimation in every individual sample run, but it does

guarantee better performance statistically.

The next scenario we considered was the case where all eight health param-

eters degrade at the same time. We simulated a degradation over 500 °ights of

¡1% for fan air°ow, ¡2% for fan e±ciency, ¡3% for compressor air°ow, ¡2% for

compressor e±ciency, +3% for high pressure turbine air°ow, ¡2% for high pressure

turbine enthalpy change, +2% for low pressure turbine air°ow, and ¡1% for low

pressure turbine enthalpy change. This is summarized in Table 6. Figure 3 shows
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the performance of the Kalman ¯lters in this case. Table 7 shows the performance

of the ¯lters averaged over 16 simulations like this (each simulation being subject

to a di®erent random noise history). It can be seen that (on average) the ¯lter with

soft constraints o®ers a 9% improvement over the unconstrained ¯lter, and the ¯lter

with hard constraints o®ers a 38% improvement over the unconstrained ¯lter. As

mentioned above, these numbers should not be interpreted as having any statisti-

cal sign¯cance (due to our limited sample size of 16 cases) but they do show the

improvement that is possible with constrained Kalman ¯lters.

The improved performance of the constrained ¯lters comes with a price, and

that price is computational e®ort. The ¯lter with soft constraints requires only

slightly (14%) more computational e®ort than the unconstrained ¯lter, but the

¯lter with hard constaints requires about four times the computational e®ort of

the unconstrained ¯lter. This is because of the additional quadratic programming

problem that is required for hard constraints. However, computational e®ort is not

a critical issue for the particular application of turbofan health estimation since the

¯ltering is performed on ground-based computers after each °ight.

7 Conclusion and Discussion

We have presented two methods for incorporating linear state inequality constraints

in a Kalman ¯lter. The ¯rst method incorporated hard constraints into the Kalman

¯lter to maintain the state variable estimates within a user-de¯ned envelope. The

second method incorporated soft constraints into the Kalman ¯lter to ensure that

the state variable estimates vary slowly with time. The simulation results demon-

strate the e®ectiveness of these methods, particularly for turbofan engine health

estimation.

If the system whose state variables are being estimated has known state variable

constraints, then those constraints can be incorporated into the Kalman ¯lter as

shown in this paper. However, in practice, the constraints enforced in the ¯lter

might be more relaxed than the true constraints. This allows the ¯lter to correct

state variable estimates in a direction that the true state variables might never
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change. This is a departure from strict adherence to theory, but in practice this

improves the performance of the ¯lter. This is an implementation issue that is

conceptually similar to tuning a standard Kalman ¯lter.

It was seen in Theorem 2 that the ¯lter with hard constraints has a smaller

estimation error covariance than the unconstrained Kalman ¯lter. At ¯rst this seems

counterintuitive, since the standard Kalman ¯lter is by de¯nition the minimum

variance ¯lter. However, we have changed the problem by introducing state variable

constraints. Therefore, the standard Kalman ¯lter is not the minimum variance

¯lter for the turbofan engine health estimation problem, and we can do better with

the constrained Kalman ¯lter.

We saw that the ¯lter with hard constraints required a much larger computa-

tional e®ort than the standard Kalman ¯lter. This is due to the addition of the

quadratic programming problem that must be solved in the constrained Kalman

¯lter. The engineer must therefore perform a tradeo® between computational ef-

fort and estimation accuracy. For real time applications the improved estimation

accuracy may not be worth the increase in computational e®ort.

It was seen in Figures 2 and 3 that although the constrained ¯lters improve

the estimation accuracy, the general trend of the state variable estimates does not

change with the introduction of state constraints. This is because the constrained

¯lters are based on the unconstrained Kalman ¯lter. The constrained ¯lter estimates

therefore have the same shape as the unconstrained estimates until the constraints

are violated, at which point the state variable estimates are projected onto the

edge of the constraint boundary. The constrained ¯lters presented in this paper

are not qualitatively di®erent than the standard Kalman ¯lter; they are rather a

quantitative improvement in the standard Kalman ¯lter.

Note that the Kalman ¯lter works well only if the assumed system model matches

reality fairly closely. The method presented in this paper, by itself, will not work

well if there are large sensor biases or hard faults due to severe component failures.

A mission-critical implementation of a Kalman ¯lter should always include some sort

of residual check to verify the validity of the Kalman ¯lter results, particularly for

the application of turbofan engine health estimation considered in this paper [3, 26].
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Although we have considered only linear state constraints, it is not conceptually

di±cult to extend this paper to nonlinear constraints. If the state constraints are

nonlinear they can be linearized as discussed in [2].

Further work along the lines of this research could focus on combining our work

with [27] in order to guarantee convergence in the presence of nonlinear constraints.

Other e®orts could explore the incorporation of state constraints for optimal smooth-

ing, or the use of state constraints in H ¯ltering [28]. Further work could also focus1
on integrating the nonlinear simulation logic in DIGTEM [8, 22] with the Kalman

¯lter to obtain more complete results. This would also allow us to more easily

test the Kalman ¯lter at various operating points without translating data from

DIGTEM to MATLAB.
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State Nominal Value
Low Pressure Turbine Rotor Speed 6140 RPM
High Pressure Turbine Rotor Speed 9395 RPM
Compressor Mass Flow 0.457 kg/s
Combustor Inlet Temperature 965 K
Combustor Mass Flow 0.264 kg/s
High Pressure Turbine Inlet Temperature 1593 K
High Pressure Turbine Mass Flow 1.48 kg/s
Low Pressure Turbine Inlet Temperature 1129 K
Low Pressure Turbine Mass Flow 1.79 kg/s
Augmentor Inlet Temperature 790 K
Augmentor Mass Flow 1.46 kg/s
Nozzle Inlet Temperature 790 K

2Duct Fluid Momentum 53.6 kg/s
2Augmentor Fluid Momentum 103 kg/s

Duct Mass Flow 4.52 kg/s
Duct Temperature 571 K

Table 1: Turbofan states.

Control Nominal Value
Combustor Fuel Flow 0.37 kg/s
Augmentor Fuel Flow 0 kg/s

2Nozzle Throat Area 430 cm
2Nozzle Exit Area 492 cm

Fan Vane Angle {25 deg
Compressor Van Angle {20 deg

Table 2: Turbofan controls.
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Health Parameter Nominal Value
Fan Air°ow 102 kg/s
Fan E±ciency 0.82
Compressor Air°ow 48.7 kg/s
Compressor E±ciency 0.83
High Pressure Turbine Air°ow 41.0 kg/s
High Pressure Turbine Enthalpy Change 101 J/kg
Low Pressure Turbine Air°ow 48.3 kg/s
Low Pressure Turbine Enthalpy Change 27.1 J/kg

Table 3: Turbofan health parameters.

Measurement Nominal Value SNR
Low Pressure Turbine Rotor Speed 6140 RPM 150
High Pressure Turbine Rotor Speed 9395 RPM 150

2Duct Pressure 19.0 N/cm 200
Duct Temperature 571 K 100

2Compressor Inlet Pressure 20.5 N/cm 200
Compressor Inlet Temperature 577 K 100

2Combustor Pressure 97.5 N/cm 200
Combustor Inlet Temperature 965 K 100

2Low Pressure Turbine Inlet Pressure 26.8 N/cm 100
Low Pressure Turbine Inlet Temperature 1130 K 70

2Augmentor Inlet Pressure 17.4 N/cm 100
Augmentor Inlet Temperature 790 K 70

Table 4: Turbofan measurements.
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Estimation Error (%)
Health Unconstrained Soft Constrained Hard Constrained
Parameter Filter Filter Filter
Fan Air°ow 0.123 0.105 0.139
Fan E±ciency 0.177 0.166 0.113
Compressor Air°ow 0.145 0.132 0.113
Compressor E±ciency 0.102 0.086 0.059
HPT Air°ow 0.116 0.100 0.101
HPT Enthalpy Change 0.093 0.081 0.055
LPT Air°ow 0.104 0.090 0.109
LPT Enthalpy Change 0.181 0.168 0.118
Average 0.130 0.116 0.101

Table 5: Kalman ¯lter estimation errors. HPT = High Pressure Turbine,
and LPT = Low Pressure Turbine. The numbers shown are RMS estimation
errors (percent) averaged over eight simulations where each simulation had one
health parameter degradation while the other seven health parameters were
unchanged.

Health True Degradation
Fan Air°ow {1%
Fan E±ciency {2%
Compressor Air°ow {3%
Compressor E±ciency {2%
HPT Air°ow +3%
HPT Enthalpy Change {2%
LPT Air°ow +2%
LPT Enthalpy Change {1%

Table 6: Health parameter degradation amounts for test scenario.
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Estimation Error (%)
Health Unconstrained Soft Constrained Hard Constrained
Parameter Filter Filter Filter
Fan Air°ow 0.129 0.113 0.089
Fan E±ciency 0.163 0.149 0.105
Compressor Air°ow 0.152 0.146 0.103
Compressor E±ciency 0.101 0.087 0.052
HPT Air°ow 0.119 0.114 0.076
HPT Enthalpy Change 0.092 0.078 0.050
LPT Air°ow 0.104 0.091 0.057
LPT Enthalpy Change 0.168 0.155 0.111
Average 0.128 0.116 0.080

Table 7: Kalman ¯lter estimation errors. HPT = High Pressure Turbine,
and LPT = Low Pressure Turbine. The numbers shown are RMS estimation
errors (percent) averaged over 16 simulations, where each simulation had a
linear degradation of all eight health parameters.
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Figure 1: Schematic representation of turbofan engine

29NASA/TM—2003-212111



 
0 100 200 300 400 500

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

flight number

de
gr

ad
at

io
n 

es
tim

at
e 

(%
)

 

 
0 100 200 300 400 500

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

flight number

de
gr

ad
at

io
n 

es
tim

at
e 

(%
)

 

 
0 100 200 300 400 500

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

flight number

de
gr

ad
at

io
n 

es
tim

at
e 

(%
)

 
 

Figure 2: Kalman filter estimates of health parameters. The true health parameter changes 
were a −3% change in the first parameter, and zero change in the other seven parameters. 
The true health parameter changes are shown as heavy lines, and the filter estimates are 
shown as lighter lines. 

(a) Unconstrained  
Kalman filter 

(b) Kalman filter 
with soft constraints 

(c) Kalman filter with 
hard constraints 
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Figure 3: Kalman filter estimates of health parameters. The true health parameter changes 
were various values in between −3% and +3%. The true health parameter changes are 
shown as heavy lines, and the filter estimates are shown as lighter lines.  
 

(a) Unconstrained  
Kalman filter 

(b) Kalman filter 
with soft constraints 

(c) Kalman filter with 
hard constraints 
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Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman
filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable
constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the
structure of the Kalman filter. This paper develops two analytic methods of incorporating state variable inequality
constraints in the Kalman filter. The first method is a general technique of using hard constraints to enforce inequalities
on the state variable estimates. The resultant filter is a combination of a standard Kalman filter and a quadratic program-
ming problem. The second method uses soft constraints to estimate state variables that are known to vary slowly with
time. (Soft constraints are constraints that are required to be approximately satisfied rather than exactly satisfied.) The
incorporation of state variable constraints increases the computational effort of the filter but significantly improves its
estimation accuracy. The improvement is proven theoretically and shown via simulation results. The use of the algorithm
is demonstrated on a linearized simulation of a turbofan engine to estimate health parameters. The turbofan engine
model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new
algorithms provide improved performance in this example over unconstrained Kalman filtering.
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